Metamath Proof Explorer


Theorem comfffn

Description: The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses comfffn.o O = comp 𝑓 C
comfffn.b B = Base C
Assertion comfffn O Fn B × B × B

Proof

Step Hyp Ref Expression
1 comfffn.o O = comp 𝑓 C
2 comfffn.b B = Base C
3 eqid Hom C = Hom C
4 eqid comp C = comp C
5 1 2 3 4 comfffval O = x B × B , y B g 2 nd x Hom C y , f Hom C x g x comp C y f
6 ovex 2 nd x Hom C y V
7 fvex Hom C x V
8 6 7 mpoex g 2 nd x Hom C y , f Hom C x g x comp C y f V
9 5 8 fnmpoi O Fn B × B × B