Metamath Proof Explorer


Theorem comffn

Description: The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses comfffn.o O = comp 𝑓 C
comfffn.b B = Base C
comffn.h H = Hom C
comffn.x φ X B
comffn.y φ Y B
comffn.z φ Z B
Assertion comffn φ X Y O Z Fn Y H Z × X H Y

Proof

Step Hyp Ref Expression
1 comfffn.o O = comp 𝑓 C
2 comfffn.b B = Base C
3 comffn.h H = Hom C
4 comffn.x φ X B
5 comffn.y φ Y B
6 comffn.z φ Z B
7 eqid g Y H Z , f X H Y g X Y comp C Z f = g Y H Z , f X H Y g X Y comp C Z f
8 ovex g X Y comp C Z f V
9 7 8 fnmpoi g Y H Z , f X H Y g X Y comp C Z f Fn Y H Z × X H Y
10 eqid comp C = comp C
11 1 2 3 10 4 5 6 comffval φ X Y O Z = g Y H Z , f X H Y g X Y comp C Z f
12 11 fneq1d φ X Y O Z Fn Y H Z × X H Y g Y H Z , f X H Y g X Y comp C Z f Fn Y H Z × X H Y
13 9 12 mpbiri φ X Y O Z Fn Y H Z × X H Y