Metamath Proof Explorer


Theorem comffval

Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses comfffval.o O = comp 𝑓 C
comfffval.b B = Base C
comfffval.h H = Hom C
comfffval.x · ˙ = comp C
comffval.x φ X B
comffval.y φ Y B
comffval.z φ Z B
Assertion comffval φ X Y O Z = g Y H Z , f X H Y g X Y · ˙ Z f

Proof

Step Hyp Ref Expression
1 comfffval.o O = comp 𝑓 C
2 comfffval.b B = Base C
3 comfffval.h H = Hom C
4 comfffval.x · ˙ = comp C
5 comffval.x φ X B
6 comffval.y φ Y B
7 comffval.z φ Z B
8 1 2 3 4 comfffval O = x B × B , z B g 2 nd x H z , f H x g x · ˙ z f
9 8 a1i φ O = x B × B , z B g 2 nd x H z , f H x g x · ˙ z f
10 simprl φ x = X Y z = Z x = X Y
11 10 fveq2d φ x = X Y z = Z 2 nd x = 2 nd X Y
12 op2ndg X B Y B 2 nd X Y = Y
13 5 6 12 syl2anc φ 2 nd X Y = Y
14 13 adantr φ x = X Y z = Z 2 nd X Y = Y
15 11 14 eqtrd φ x = X Y z = Z 2 nd x = Y
16 simprr φ x = X Y z = Z z = Z
17 15 16 oveq12d φ x = X Y z = Z 2 nd x H z = Y H Z
18 10 fveq2d φ x = X Y z = Z H x = H X Y
19 df-ov X H Y = H X Y
20 18 19 eqtr4di φ x = X Y z = Z H x = X H Y
21 10 16 oveq12d φ x = X Y z = Z x · ˙ z = X Y · ˙ Z
22 21 oveqd φ x = X Y z = Z g x · ˙ z f = g X Y · ˙ Z f
23 17 20 22 mpoeq123dv φ x = X Y z = Z g 2 nd x H z , f H x g x · ˙ z f = g Y H Z , f X H Y g X Y · ˙ Z f
24 5 6 opelxpd φ X Y B × B
25 ovex Y H Z V
26 ovex X H Y V
27 25 26 mpoex g Y H Z , f X H Y g X Y · ˙ Z f V
28 27 a1i φ g Y H Z , f X H Y g X Y · ˙ Z f V
29 9 23 24 7 28 ovmpod φ X Y O Z = g Y H Z , f X H Y g X Y · ˙ Z f