Metamath Proof Explorer


Theorem comffval2

Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses comfffval2.o O = comp 𝑓 C
comfffval2.b B = Base C
comfffval2.h H = Hom 𝑓 C
comfffval2.x · ˙ = comp C
comffval2.x φ X B
comffval2.y φ Y B
comffval2.z φ Z B
Assertion comffval2 φ X Y O Z = g Y H Z , f X H Y g X Y · ˙ Z f

Proof

Step Hyp Ref Expression
1 comfffval2.o O = comp 𝑓 C
2 comfffval2.b B = Base C
3 comfffval2.h H = Hom 𝑓 C
4 comfffval2.x · ˙ = comp C
5 comffval2.x φ X B
6 comffval2.y φ Y B
7 comffval2.z φ Z B
8 eqid Hom C = Hom C
9 1 2 8 4 5 6 7 comffval φ X Y O Z = g Y Hom C Z , f X Hom C Y g X Y · ˙ Z f
10 3 2 8 6 7 homfval φ Y H Z = Y Hom C Z
11 3 2 8 5 6 homfval φ X H Y = X Hom C Y
12 eqidd φ g X Y · ˙ Z f = g X Y · ˙ Z f
13 10 11 12 mpoeq123dv φ g Y H Z , f X H Y g X Y · ˙ Z f = g Y Hom C Z , f X Hom C Y g X Y · ˙ Z f
14 9 13 eqtr4d φ X Y O Z = g Y H Z , f X H Y g X Y · ˙ Z f