Metamath Proof Explorer


Theorem comfval

Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses comfffval.o O = comp 𝑓 C
comfffval.b B = Base C
comfffval.h H = Hom C
comfffval.x · ˙ = comp C
comffval.x φ X B
comffval.y φ Y B
comffval.z φ Z B
comfval.f φ F X H Y
comfval.g φ G Y H Z
Assertion comfval φ G X Y O Z F = G X Y · ˙ Z F

Proof

Step Hyp Ref Expression
1 comfffval.o O = comp 𝑓 C
2 comfffval.b B = Base C
3 comfffval.h H = Hom C
4 comfffval.x · ˙ = comp C
5 comffval.x φ X B
6 comffval.y φ Y B
7 comffval.z φ Z B
8 comfval.f φ F X H Y
9 comfval.g φ G Y H Z
10 1 2 3 4 5 6 7 comffval φ X Y O Z = g Y H Z , f X H Y g X Y · ˙ Z f
11 oveq12 g = G f = F g X Y · ˙ Z f = G X Y · ˙ Z F
12 11 adantl φ g = G f = F g X Y · ˙ Z f = G X Y · ˙ Z F
13 ovexd φ G X Y · ˙ Z F V
14 10 12 9 8 13 ovmpod φ G X Y O Z F = G X Y · ˙ Z F