Metamath Proof Explorer


Theorem complss

Description: Complementation reverses inclusion. (Contributed by Andrew Salmon, 15-Jul-2011) (Proof shortened by BJ, 19-Mar-2021)

Ref Expression
Assertion complss A B V B V A

Proof

Step Hyp Ref Expression
1 sscon A B V B V A
2 sscon V B V A V V A V V B
3 ddif V V A = A
4 ddif V V B = B
5 2 3 4 3sstr3g V B V A A B
6 1 5 impbii A B V B V A