Metamath Proof Explorer


Theorem compss

Description: Express image under of the complementation isomorphism. (Contributed by Stefan O'Rear, 5-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)

Ref Expression
Hypothesis compss.a F = x 𝒫 A A x
Assertion compss F G = y 𝒫 A | A y G

Proof

Step Hyp Ref Expression
1 compss.a F = x 𝒫 A A x
2 1 compsscnv F -1 = F
3 2 imaeq1i F -1 G = F G
4 difeq2 x = y A x = A y
5 4 cbvmptv x 𝒫 A A x = y 𝒫 A A y
6 1 5 eqtri F = y 𝒫 A A y
7 6 mptpreima F -1 G = y 𝒫 A | A y G
8 3 7 eqtr3i F G = y 𝒫 A | A y G