Metamath Proof Explorer


Theorem compsscnv

Description: Complementation on a power set lattice is an involution. (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Hypothesis compss.a F = x 𝒫 A A x
Assertion compsscnv F -1 = F

Proof

Step Hyp Ref Expression
1 compss.a F = x 𝒫 A A x
2 cnvopab y x | y 𝒫 A x = A y -1 = x y | y 𝒫 A x = A y
3 difeq2 x = y A x = A y
4 3 cbvmptv x 𝒫 A A x = y 𝒫 A A y
5 df-mpt y 𝒫 A A y = y x | y 𝒫 A x = A y
6 1 4 5 3eqtri F = y x | y 𝒫 A x = A y
7 6 cnveqi F -1 = y x | y 𝒫 A x = A y -1
8 df-mpt x 𝒫 A A x = x y | x 𝒫 A y = A x
9 compsscnvlem y 𝒫 A x = A y x 𝒫 A y = A x
10 compsscnvlem x 𝒫 A y = A x y 𝒫 A x = A y
11 9 10 impbii y 𝒫 A x = A y x 𝒫 A y = A x
12 11 opabbii x y | y 𝒫 A x = A y = x y | x 𝒫 A y = A x
13 8 1 12 3eqtr4i F = x y | y 𝒫 A x = A y
14 2 7 13 3eqtr4i F -1 = F