Metamath Proof Explorer


Theorem compsscnvlem

Description: Lemma for compsscnv . (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion compsscnvlem x 𝒫 A y = A x y 𝒫 A x = A y

Proof

Step Hyp Ref Expression
1 simpr x 𝒫 A y = A x y = A x
2 difss A x A
3 1 2 eqsstrdi x 𝒫 A y = A x y A
4 velpw y 𝒫 A y A
5 3 4 sylibr x 𝒫 A y = A x y 𝒫 A
6 1 difeq2d x 𝒫 A y = A x A y = A A x
7 elpwi x 𝒫 A x A
8 7 adantr x 𝒫 A y = A x x A
9 dfss4 x A A A x = x
10 8 9 sylib x 𝒫 A y = A x A A x = x
11 6 10 eqtr2d x 𝒫 A y = A x x = A y
12 5 11 jca x 𝒫 A y = A x y 𝒫 A x = A y