Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
compsscnvlem
Next ⟩
compsscnv
Metamath Proof Explorer
Ascii
Unicode
Theorem
compsscnvlem
Description:
Lemma for
compsscnv
.
(Contributed by
Mario Carneiro
, 17-May-2015)
Ref
Expression
Assertion
compsscnvlem
⊢
x
∈
𝒫
A
∧
y
=
A
∖
x
→
y
∈
𝒫
A
∧
x
=
A
∖
y
Proof
Step
Hyp
Ref
Expression
1
simpr
⊢
x
∈
𝒫
A
∧
y
=
A
∖
x
→
y
=
A
∖
x
2
difss
⊢
A
∖
x
⊆
A
3
1
2
eqsstrdi
⊢
x
∈
𝒫
A
∧
y
=
A
∖
x
→
y
⊆
A
4
velpw
⊢
y
∈
𝒫
A
↔
y
⊆
A
5
3
4
sylibr
⊢
x
∈
𝒫
A
∧
y
=
A
∖
x
→
y
∈
𝒫
A
6
1
difeq2d
⊢
x
∈
𝒫
A
∧
y
=
A
∖
x
→
A
∖
y
=
A
∖
A
∖
x
7
elpwi
⊢
x
∈
𝒫
A
→
x
⊆
A
8
7
adantr
⊢
x
∈
𝒫
A
∧
y
=
A
∖
x
→
x
⊆
A
9
dfss4
⊢
x
⊆
A
↔
A
∖
A
∖
x
=
x
10
8
9
sylib
⊢
x
∈
𝒫
A
∧
y
=
A
∖
x
→
A
∖
A
∖
x
=
x
11
6
10
eqtr2d
⊢
x
∈
𝒫
A
∧
y
=
A
∖
x
→
x
=
A
∖
y
12
5
11
jca
⊢
x
∈
𝒫
A
∧
y
=
A
∖
x
→
y
∈
𝒫
A
∧
x
=
A
∖
y