Metamath Proof Explorer


Theorem compssiso

Description: Complementation is an antiautomorphism on power set lattices. (Contributed by Stefan O'Rear, 4-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)

Ref Expression
Hypothesis compss.a F = x 𝒫 A A x
Assertion compssiso A V F Isom [⊂] , [⊂] -1 𝒫 A 𝒫 A

Proof

Step Hyp Ref Expression
1 compss.a F = x 𝒫 A A x
2 difexg A V A x V
3 2 ralrimivw A V x 𝒫 A A x V
4 1 fnmpt x 𝒫 A A x V F Fn 𝒫 A
5 3 4 syl A V F Fn 𝒫 A
6 1 compsscnv F -1 = F
7 6 fneq1i F -1 Fn 𝒫 A F Fn 𝒫 A
8 5 7 sylibr A V F -1 Fn 𝒫 A
9 dff1o4 F : 𝒫 A 1-1 onto 𝒫 A F Fn 𝒫 A F -1 Fn 𝒫 A
10 5 8 9 sylanbrc A V F : 𝒫 A 1-1 onto 𝒫 A
11 elpwi b 𝒫 A b A
12 11 ad2antll A V a 𝒫 A b 𝒫 A b A
13 1 isf34lem1 A V b A F b = A b
14 12 13 syldan A V a 𝒫 A b 𝒫 A F b = A b
15 elpwi a 𝒫 A a A
16 15 ad2antrl A V a 𝒫 A b 𝒫 A a A
17 1 isf34lem1 A V a A F a = A a
18 16 17 syldan A V a 𝒫 A b 𝒫 A F a = A a
19 14 18 psseq12d A V a 𝒫 A b 𝒫 A F b F a A b A a
20 difss A a A
21 pssdifcom1 b A A a A A b A a A A a b
22 12 20 21 sylancl A V a 𝒫 A b 𝒫 A A b A a A A a b
23 dfss4 a A A A a = a
24 16 23 sylib A V a 𝒫 A b 𝒫 A A A a = a
25 24 psseq1d A V a 𝒫 A b 𝒫 A A A a b a b
26 19 22 25 3bitrrd A V a 𝒫 A b 𝒫 A a b F b F a
27 vex b V
28 27 brrpss a [⊂] b a b
29 fvex F a V
30 29 brrpss F b [⊂] F a F b F a
31 26 28 30 3bitr4g A V a 𝒫 A b 𝒫 A a [⊂] b F b [⊂] F a
32 relrpss Rel [⊂]
33 32 relbrcnv F a [⊂] -1 F b F b [⊂] F a
34 31 33 bitr4di A V a 𝒫 A b 𝒫 A a [⊂] b F a [⊂] -1 F b
35 34 ralrimivva A V a 𝒫 A b 𝒫 A a [⊂] b F a [⊂] -1 F b
36 df-isom F Isom [⊂] , [⊂] -1 𝒫 A 𝒫 A F : 𝒫 A 1-1 onto 𝒫 A a 𝒫 A b 𝒫 A a [⊂] b F a [⊂] -1 F b
37 10 35 36 sylanbrc A V F Isom [⊂] , [⊂] -1 𝒫 A 𝒫 A