Metamath Proof Explorer


Theorem comraddd

Description: Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses comraddd.1 φ B
comraddd.2 φ C
comraddd.3 φ A = B + C
Assertion comraddd φ A = C + B

Proof

Step Hyp Ref Expression
1 comraddd.1 φ B
2 comraddd.2 φ C
3 comraddd.3 φ A = B + C
4 1 2 addcomd φ B + C = C + B
5 3 4 eqtrd φ A = C + B