Metamath Proof Explorer


Theorem con1b

Description: Contraposition. Bidirectional version of con1 . (Contributed by NM, 3-Jan-1993)

Ref Expression
Assertion con1b ¬ φ ψ ¬ ψ φ

Proof

Step Hyp Ref Expression
1 con1 ¬ φ ψ ¬ ψ φ
2 con1 ¬ ψ φ ¬ φ ψ
3 1 2 impbii ¬ φ ψ ¬ ψ φ