Metamath Proof Explorer


Theorem con2bi

Description: Contraposition. Theorem *4.12 of WhiteheadRussell p. 117. (Contributed by NM, 15-Apr-1995) (Proof shortened by Wolf Lammen, 3-Jan-2013)

Ref Expression
Assertion con2bi φ ¬ ψ ψ ¬ φ

Proof

Step Hyp Ref Expression
1 notbi φ ¬ ψ ¬ φ ¬ ¬ ψ
2 notnotb ψ ¬ ¬ ψ
3 2 bibi2i ¬ φ ψ ¬ φ ¬ ¬ ψ
4 bicom ¬ φ ψ ψ ¬ φ
5 1 3 4 3bitr2i φ ¬ ψ ψ ¬ φ