Metamath Proof Explorer


Theorem con2d

Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993)

Ref Expression
Hypothesis con2d.1 φ ψ ¬ χ
Assertion con2d φ χ ¬ ψ

Proof

Step Hyp Ref Expression
1 con2d.1 φ ψ ¬ χ
2 notnotr ¬ ¬ ψ ψ
3 2 1 syl5 φ ¬ ¬ ψ ¬ χ
4 3 con4d φ χ ¬ ψ