Metamath Proof Explorer


Theorem con34b

Description: A biconditional form of contraposition. Theorem *4.1 of WhiteheadRussell p. 116. (Contributed by NM, 11-May-1993)

Ref Expression
Assertion con34b φ ψ ¬ ψ ¬ φ

Proof

Step Hyp Ref Expression
1 con3 φ ψ ¬ ψ ¬ φ
2 con4 ¬ ψ ¬ φ φ ψ
3 1 2 impbii φ ψ ¬ ψ ¬ φ