Metamath Proof Explorer


Theorem con4bid

Description: A contraposition deduction. (Contributed by NM, 21-May-1994)

Ref Expression
Hypothesis con4bid.1 φ ¬ ψ ¬ χ
Assertion con4bid φ ψ χ

Proof

Step Hyp Ref Expression
1 con4bid.1 φ ¬ ψ ¬ χ
2 1 biimprd φ ¬ χ ¬ ψ
3 2 con4d φ ψ χ
4 1 biimpd φ ¬ ψ ¬ χ
5 3 4 impcon4bid φ ψ χ