Metamath Proof Explorer
		
		
		
		Description:  Proof by contradiction.  (Contributed by NM, 9-Feb-2006)  (Proof
       shortened by Wolf Lammen, 19-Jun-2014)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | condan.1 |  | 
					
						|  |  | condan.2 |  | 
				
					|  | Assertion | condan |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | condan.1 |  | 
						
							| 2 |  | condan.2 |  | 
						
							| 3 | 1 2 | pm2.65da |  | 
						
							| 4 | 3 | notnotrd |  |