Metamath Proof Explorer


Theorem confun

Description: Given the hypotheses there exists a proof for (c implies ( d iff a ) ). (Contributed by Jarvin Udandy, 6-Sep-2020)

Ref Expression
Hypotheses confun.1 φ
confun.2 χ ψ
confun.3 χ θ
confun.4 φ φ ψ
Assertion confun χ θ φ

Proof

Step Hyp Ref Expression
1 confun.1 φ
2 confun.2 χ ψ
3 confun.3 χ θ
4 confun.4 φ φ ψ
5 ax-1 χ θ χ
6 3 a1i χ χ θ
7 5 6 impbid χ θ χ
8 1 4 ax-mp φ ψ
9 ax-1 φ ψ φ
10 1 9 ax-mp ψ φ
11 8 10 impbii φ ψ
12 2 11 sylibr χ φ
13 12 a1i χ χ φ
14 ax-1 χ φ χ
15 13 14 impbid χ χ φ
16 7 15 bitrd χ θ φ