Metamath Proof Explorer


Theorem confun3

Description: Confun's more complex form where both a,d have been "defined". (Contributed by Jarvin Udandy, 6-Sep-2020)

Ref Expression
Hypotheses confun3.1 φ χ ψ
confun3.2 θ ¬ χ χ ¬ χ
confun3.3 χ ψ
confun3.4 χ ¬ χ χ ¬ χ
confun3.5 χ ψ χ ψ ψ
Assertion confun3 χ ¬ χ χ ¬ χ χ ψ

Proof

Step Hyp Ref Expression
1 confun3.1 φ χ ψ
2 confun3.2 θ ¬ χ χ ¬ χ
3 confun3.3 χ ψ
4 confun3.4 χ ¬ χ χ ¬ χ
5 confun3.5 χ ψ χ ψ ψ
6 3 3 4 5 confun χ ¬ χ χ ¬ χ χ ψ