Metamath Proof Explorer


Theorem confun4

Description: An attempt at derivative. Resisted simplest path to a proof. (Contributed by Jarvin Udandy, 6-Sep-2020)

Ref Expression
Hypotheses confun4.1 φ
confun4.2 φ ψ ψ
confun4.3 ψ φ χ
confun4.4 χ θ φ θ ψ
confun4.5 τ χ θ
confun4.6 η ¬ χ χ ¬ χ
confun4.7 ψ
confun4.8 χ θ
Assertion confun4 χ ψ τ

Proof

Step Hyp Ref Expression
1 confun4.1 φ
2 confun4.2 φ ψ ψ
3 confun4.3 ψ φ χ
4 confun4.4 χ θ φ θ ψ
5 confun4.5 τ χ θ
6 confun4.6 η ¬ χ χ ¬ χ
7 confun4.7 ψ
8 confun4.8 χ θ
9 7 3 ax-mp φ χ
10 1 9 ax-mp χ
11 bicom1 τ χ θ χ θ τ
12 5 11 ax-mp χ θ τ
13 12 biimpi χ θ τ
14 8 13 ax-mp τ
15 7 14 pm3.2i ψ τ
16 pm3.4 ψ τ ψ τ
17 15 16 ax-mp ψ τ
18 10 17 pm3.2i χ ψ τ
19 pm3.4 χ ψ τ χ ψ τ
20 18 19 ax-mp χ ψ τ