Metamath Proof Explorer


Theorem confun5

Description: An attempt at derivative. Resisted simplest path to a proof. Interesting that ch, th, ta, et were all provable. (Contributed by Jarvin Udandy, 7-Sep-2020)

Ref Expression
Hypotheses confun5.1 φ
confun5.2 φ ψ ψ
confun5.3 ψ φ χ
confun5.4 χ θ φ θ ψ
confun5.5 τ χ θ
confun5.6 η ¬ χ χ ¬ χ
confun5.7 ψ
confun5.8 χ θ
Assertion confun5 χ η τ

Proof

Step Hyp Ref Expression
1 confun5.1 φ
2 confun5.2 φ ψ ψ
3 confun5.3 ψ φ χ
4 confun5.4 χ θ φ θ ψ
5 confun5.5 τ χ θ
6 confun5.6 η ¬ χ χ ¬ χ
7 confun5.7 ψ
8 confun5.8 χ θ
9 7 3 ax-mp φ χ
10 1 9 ax-mp χ
11 10 atnaiana ¬ χ χ ¬ χ
12 bicom1 η ¬ χ χ ¬ χ ¬ χ χ ¬ χ η
13 6 12 ax-mp ¬ χ χ ¬ χ η
14 13 biimpi ¬ χ χ ¬ χ η
15 11 14 ax-mp η
16 bicom1 τ χ θ χ θ τ
17 5 16 ax-mp χ θ τ
18 17 biimpi χ θ τ
19 8 18 ax-mp τ
20 15 19 2th η τ
21 ax-1 η τ χ η τ
22 20 21 ax-mp χ η τ