| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zcn |
|
| 2 |
1
|
3ad2ant2 |
|
| 3 |
2
|
ad2antrr |
|
| 4 |
|
zcn |
|
| 5 |
4
|
3ad2ant3 |
|
| 6 |
5
|
ad2antrr |
|
| 7 |
|
zsubcl |
|
| 8 |
7
|
3adant1 |
|
| 9 |
8
|
zcnd |
|
| 10 |
9
|
abscld |
|
| 11 |
10
|
adantr |
|
| 12 |
|
nnre |
|
| 13 |
12
|
3ad2ant1 |
|
| 14 |
13
|
adantr |
|
| 15 |
11 14
|
ltnled |
|
| 16 |
15
|
biimpa |
|
| 17 |
|
nnz |
|
| 18 |
17
|
3ad2ant1 |
|
| 19 |
18
|
ad3antrrr |
|
| 20 |
8
|
ad3antrrr |
|
| 21 |
|
simpr |
|
| 22 |
19 20 21
|
3jca |
|
| 23 |
|
simpllr |
|
| 24 |
|
dvdsleabs |
|
| 25 |
22 23 24
|
sylc |
|
| 26 |
25
|
ex |
|
| 27 |
26
|
necon1bd |
|
| 28 |
16 27
|
mpd |
|
| 29 |
3 6 28
|
subeq0d |
|
| 30 |
|
oveq1 |
|
| 31 |
30
|
adantl |
|
| 32 |
5
|
ad2antrr |
|
| 33 |
32
|
subidd |
|
| 34 |
31 33
|
eqtrd |
|
| 35 |
34
|
abs00bd |
|
| 36 |
|
nngt0 |
|
| 37 |
36
|
3ad2ant1 |
|
| 38 |
37
|
ad2antrr |
|
| 39 |
35 38
|
eqbrtrd |
|
| 40 |
29 39
|
impbida |
|