Metamath Proof Explorer


Theorem congid

Description: Every integer is congruent to itself mod every base. (Contributed by Stefan O'Rear, 1-Oct-2014)

Ref Expression
Assertion congid A B A B B

Proof

Step Hyp Ref Expression
1 dvds0 A A 0
2 1 adantr A B A 0
3 zcn B B
4 3 adantl A B B
5 4 subidd A B B B = 0
6 2 5 breqtrrd A B A B B