Metamath Proof Explorer


Theorem congmul

Description: If two pairs of numbers are componentwise congruent, so are their products. (Contributed by Stefan O'Rear, 1-Oct-2014)

Ref Expression
Assertion congmul A B C D E A B C A D E A B D C E

Proof

Step Hyp Ref Expression
1 simp11 A B C D E A B C A D E A
2 simp12 A B C D E A B C A D E B
3 simp2l A B C D E A B C A D E D
4 2 3 zmulcld A B C D E A B C A D E B D
5 simp2r A B C D E A B C A D E E
6 2 5 zmulcld A B C D E A B C A D E B E
7 simp13 A B C D E A B C A D E C
8 7 5 zmulcld A B C D E A B C A D E C E
9 simp3r A B C D E A B C A D E A D E
10 zsubcl D E D E
11 10 3ad2ant2 A B C D E A B C A D E D E
12 dvdsmultr2 A B D E A D E A B D E
13 1 2 11 12 syl3anc A B C D E A B C A D E A D E A B D E
14 9 13 mpd A B C D E A B C A D E A B D E
15 zcn B B
16 15 3ad2ant2 A B C B
17 16 3ad2ant1 A B C D E A B C A D E B
18 zcn D D
19 18 adantr D E D
20 19 3ad2ant2 A B C D E A B C A D E D
21 zcn E E
22 21 adantl D E E
23 22 3ad2ant2 A B C D E A B C A D E E
24 17 20 23 subdid A B C D E A B C A D E B D E = B D B E
25 14 24 breqtrd A B C D E A B C A D E A B D B E
26 simp3l A B C D E A B C A D E A B C
27 2 7 zsubcld A B C D E A B C A D E B C
28 dvdsmultr1 A B C E A B C A B C E
29 1 27 5 28 syl3anc A B C D E A B C A D E A B C A B C E
30 26 29 mpd A B C D E A B C A D E A B C E
31 zcn C C
32 31 3ad2ant3 A B C C
33 32 3ad2ant1 A B C D E A B C A D E C
34 17 33 23 subdird A B C D E A B C A D E B C E = B E C E
35 30 34 breqtrd A B C D E A B C A D E A B E C E
36 congtr A B D B E C E A B D B E A B E C E A B D C E
37 1 4 6 8 25 35 36 syl222anc A B C D E A B C A D E A B D C E