Metamath Proof Explorer


Theorem congneg

Description: If two integers are congruent mod A , so are their negatives. (Contributed by Stefan O'Rear, 1-Oct-2014)

Ref Expression
Assertion congneg A B C A B C A - B - C

Proof

Step Hyp Ref Expression
1 congsym A B C A B C A C B
2 zcn B B
3 zcn C C
4 neg2sub B C - B - C = C B
5 2 3 4 syl2an B C - B - C = C B
6 5 ad2ant2lr A B C A B C - B - C = C B
7 1 6 breqtrrd A B C A B C A - B - C