Metamath Proof Explorer


Theorem congrep

Description: Every integer is congruent to some number in the fundamental domain. (Contributed by Stefan O'Rear, 2-Oct-2014)

Ref Expression
Assertion congrep A N a 0 A 1 A a N

Proof

Step Hyp Ref Expression
1 zmodfz N A N mod A 0 A 1
2 1 ancoms A N N mod A 0 A 1
3 nnz A A
4 3 adantr A N A
5 simpr A N N
6 zmodcl N A N mod A 0
7 6 ancoms A N N mod A 0
8 7 nn0zd A N N mod A
9 zre N N
10 nnrp A A +
11 moddifz N A + N N mod A A
12 9 10 11 syl2anr A N N N mod A A
13 nnne0 A A 0
14 13 adantr A N A 0
15 5 8 zsubcld A N N N mod A
16 dvdsval2 A A 0 N N mod A A N N mod A N N mod A A
17 4 14 15 16 syl3anc A N A N N mod A N N mod A A
18 12 17 mpbird A N A N N mod A
19 congsym A N N mod A A N N mod A A N mod A N
20 4 5 8 18 19 syl22anc A N A N mod A N
21 oveq1 a = N mod A a N = N mod A N
22 21 breq2d a = N mod A A a N A N mod A N
23 22 rspcev N mod A 0 A 1 A N mod A N a 0 A 1 A a N
24 2 20 23 syl2anc A N a 0 A 1 A a N