Metamath Proof Explorer


Theorem congsym

Description: Congruence mod A is a symmetric/commutative relation. (Contributed by Stefan O'Rear, 1-Oct-2014)

Ref Expression
Assertion congsym A B C A B C A C B

Proof

Step Hyp Ref Expression
1 simprr A B C A B C A B C
2 zcn C C
3 2 ad2antrl A B C A B C C
4 zcn B B
5 4 ad2antlr A B C A B C B
6 3 5 negsubdi2d A B C A B C C B = B C
7 1 6 breqtrrd A B C A B C A C B
8 simpll A B C A B C A
9 simprl A B C A B C C
10 simplr A B C A B C B
11 9 10 zsubcld A B C A B C C B
12 dvdsnegb A C B A C B A C B
13 8 11 12 syl2anc A B C A B C A C B A C B
14 7 13 mpbird A B C A B C A C B