Metamath Proof Explorer


Theorem conimpf

Description: Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, 28-Aug-2016)

Ref Expression
Hypotheses conimpf.1 φ
conimpf.2 ¬ ψ
conimpf.3 φ ψ
Assertion conimpf φ

Proof

Step Hyp Ref Expression
1 conimpf.1 φ
2 conimpf.2 ¬ ψ
3 conimpf.3 φ ψ
4 3 2 aibnbaif φ