Description: Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, 28-Aug-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | conimpf.1 | ||
conimpf.2 | |||
conimpf.3 | |||
Assertion | conimpf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | conimpf.1 | ||
2 | conimpf.2 | ||
3 | conimpf.3 | ||
4 | 3 2 | aibnbaif |