Metamath Proof Explorer


Theorem conjmul

Description: Two numbers whose reciprocals sum to 1 are called "conjugates" and satisfy this relationship. Equation 5 of Kreyszig p. 12. (Contributed by NM, 12-Nov-2006)

Ref Expression
Assertion conjmul P P 0 Q Q 0 1 P + 1 Q = 1 P 1 Q 1 = 1

Proof

Step Hyp Ref Expression
1 simpll P P 0 Q Q 0 P
2 simprl P P 0 Q Q 0 Q
3 reccl P P 0 1 P
4 3 adantr P P 0 Q Q 0 1 P
5 1 2 4 mul32d P P 0 Q Q 0 P Q 1 P = P 1 P Q
6 recid P P 0 P 1 P = 1
7 6 oveq1d P P 0 P 1 P Q = 1 Q
8 7 adantr P P 0 Q Q 0 P 1 P Q = 1 Q
9 mulid2 Q 1 Q = Q
10 9 ad2antrl P P 0 Q Q 0 1 Q = Q
11 5 8 10 3eqtrd P P 0 Q Q 0 P Q 1 P = Q
12 reccl Q Q 0 1 Q
13 12 adantl P P 0 Q Q 0 1 Q
14 1 2 13 mulassd P P 0 Q Q 0 P Q 1 Q = P Q 1 Q
15 recid Q Q 0 Q 1 Q = 1
16 15 oveq2d Q Q 0 P Q 1 Q = P 1
17 16 adantl P P 0 Q Q 0 P Q 1 Q = P 1
18 mulid1 P P 1 = P
19 18 ad2antrr P P 0 Q Q 0 P 1 = P
20 14 17 19 3eqtrd P P 0 Q Q 0 P Q 1 Q = P
21 11 20 oveq12d P P 0 Q Q 0 P Q 1 P + P Q 1 Q = Q + P
22 mulcl P Q P Q
23 22 ad2ant2r P P 0 Q Q 0 P Q
24 23 4 13 adddid P P 0 Q Q 0 P Q 1 P + 1 Q = P Q 1 P + P Q 1 Q
25 addcom P Q P + Q = Q + P
26 25 ad2ant2r P P 0 Q Q 0 P + Q = Q + P
27 21 24 26 3eqtr4d P P 0 Q Q 0 P Q 1 P + 1 Q = P + Q
28 22 mulid1d P Q P Q 1 = P Q
29 28 ad2ant2r P P 0 Q Q 0 P Q 1 = P Q
30 27 29 eqeq12d P P 0 Q Q 0 P Q 1 P + 1 Q = P Q 1 P + Q = P Q
31 addcl 1 P 1 Q 1 P + 1 Q
32 3 12 31 syl2an P P 0 Q Q 0 1 P + 1 Q
33 mulne0 P P 0 Q Q 0 P Q 0
34 ax-1cn 1
35 mulcan 1 P + 1 Q 1 P Q P Q 0 P Q 1 P + 1 Q = P Q 1 1 P + 1 Q = 1
36 34 35 mp3an2 1 P + 1 Q P Q P Q 0 P Q 1 P + 1 Q = P Q 1 1 P + 1 Q = 1
37 32 23 33 36 syl12anc P P 0 Q Q 0 P Q 1 P + 1 Q = P Q 1 1 P + 1 Q = 1
38 eqcom P + Q = P Q P Q = P + Q
39 muleqadd P Q P Q = P + Q P 1 Q 1 = 1
40 38 39 syl5bb P Q P + Q = P Q P 1 Q 1 = 1
41 40 ad2ant2r P P 0 Q Q 0 P + Q = P Q P 1 Q 1 = 1
42 30 37 41 3bitr3d P P 0 Q Q 0 1 P + 1 Q = 1 P 1 Q 1 = 1