Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|
2 |
|
simprl |
|
3 |
|
reccl |
|
4 |
3
|
adantr |
|
5 |
1 2 4
|
mul32d |
|
6 |
|
recid |
|
7 |
6
|
oveq1d |
|
8 |
7
|
adantr |
|
9 |
|
mulid2 |
|
10 |
9
|
ad2antrl |
|
11 |
5 8 10
|
3eqtrd |
|
12 |
|
reccl |
|
13 |
12
|
adantl |
|
14 |
1 2 13
|
mulassd |
|
15 |
|
recid |
|
16 |
15
|
oveq2d |
|
17 |
16
|
adantl |
|
18 |
|
mulid1 |
|
19 |
18
|
ad2antrr |
|
20 |
14 17 19
|
3eqtrd |
|
21 |
11 20
|
oveq12d |
|
22 |
|
mulcl |
|
23 |
22
|
ad2ant2r |
|
24 |
23 4 13
|
adddid |
|
25 |
|
addcom |
|
26 |
25
|
ad2ant2r |
|
27 |
21 24 26
|
3eqtr4d |
|
28 |
22
|
mulid1d |
|
29 |
28
|
ad2ant2r |
|
30 |
27 29
|
eqeq12d |
|
31 |
|
addcl |
|
32 |
3 12 31
|
syl2an |
|
33 |
|
mulne0 |
|
34 |
|
ax-1cn |
|
35 |
|
mulcan |
|
36 |
34 35
|
mp3an2 |
|
37 |
32 23 33 36
|
syl12anc |
|
38 |
|
eqcom |
|
39 |
|
muleqadd |
|
40 |
38 39
|
syl5bb |
|
41 |
40
|
ad2ant2r |
|
42 |
30 37 41
|
3bitr3d |
|