| Step |
Hyp |
Ref |
Expression |
| 1 |
|
conjghm.x |
|
| 2 |
|
conjghm.p |
|
| 3 |
|
conjghm.m |
|
| 4 |
|
conjsubg.f |
|
| 5 |
|
conjnmz.1 |
|
| 6 |
|
subgrcl |
|
| 7 |
6
|
ad2antrr |
|
| 8 |
|
eqid |
|
| 9 |
5
|
ssrab3 |
|
| 10 |
|
simplr |
|
| 11 |
9 10
|
sselid |
|
| 12 |
1 8 7 11
|
grpinvcld |
|
| 13 |
1
|
subgss |
|
| 14 |
13
|
adantr |
|
| 15 |
14
|
sselda |
|
| 16 |
1 2 7 12 15 11
|
grpassd |
|
| 17 |
|
eqid |
|
| 18 |
1 2 17 8 7 11
|
grprinvd |
|
| 19 |
18
|
oveq1d |
|
| 20 |
1 2 7 11 12 15
|
grpassd |
|
| 21 |
1 2 17 7 15
|
grplidd |
|
| 22 |
19 20 21
|
3eqtr3d |
|
| 23 |
|
simpr |
|
| 24 |
22 23
|
eqeltrd |
|
| 25 |
1 2 7 12 15
|
grpcld |
|
| 26 |
5
|
nmzbi |
|
| 27 |
10 25 26
|
syl2anc |
|
| 28 |
24 27
|
mpbid |
|
| 29 |
16 28
|
eqeltrrd |
|
| 30 |
|
oveq2 |
|
| 31 |
30
|
oveq1d |
|
| 32 |
|
ovex |
|
| 33 |
31 4 32
|
fvmpt |
|
| 34 |
29 33
|
syl |
|
| 35 |
18
|
oveq1d |
|
| 36 |
1 2 7 15 11
|
grpcld |
|
| 37 |
1 2 7 11 12 36
|
grpassd |
|
| 38 |
1 2 17 7 36
|
grplidd |
|
| 39 |
35 37 38
|
3eqtr3d |
|
| 40 |
39
|
oveq1d |
|
| 41 |
1 2 3
|
grppncan |
|
| 42 |
7 15 11 41
|
syl3anc |
|
| 43 |
34 40 42
|
3eqtrd |
|
| 44 |
|
ovex |
|
| 45 |
44 4
|
fnmpti |
|
| 46 |
|
fnfvelrn |
|
| 47 |
45 29 46
|
sylancr |
|
| 48 |
43 47
|
eqeltrrd |
|
| 49 |
48
|
ex |
|
| 50 |
49
|
ssrdv |
|
| 51 |
6
|
ad2antrr |
|
| 52 |
|
simplr |
|
| 53 |
9 52
|
sselid |
|
| 54 |
14
|
sselda |
|
| 55 |
1 2 3
|
grpaddsubass |
|
| 56 |
51 53 54 53 55
|
syl13anc |
|
| 57 |
1 2 3
|
grpnpcan |
|
| 58 |
51 54 53 57
|
syl3anc |
|
| 59 |
|
simpr |
|
| 60 |
58 59
|
eqeltrd |
|
| 61 |
1 3
|
grpsubcl |
|
| 62 |
51 54 53 61
|
syl3anc |
|
| 63 |
5
|
nmzbi |
|
| 64 |
52 62 63
|
syl2anc |
|
| 65 |
60 64
|
mpbird |
|
| 66 |
56 65
|
eqeltrd |
|
| 67 |
66 4
|
fmptd |
|
| 68 |
67
|
frnd |
|
| 69 |
50 68
|
eqssd |
|