Step |
Hyp |
Ref |
Expression |
1 |
|
conjghm.x |
|
2 |
|
conjghm.p |
|
3 |
|
conjghm.m |
|
4 |
|
conjsubg.f |
|
5 |
|
conjnmz.1 |
|
6 |
|
subgrcl |
|
7 |
6
|
ad2antrr |
|
8 |
5
|
ssrab3 |
|
9 |
|
simplr |
|
10 |
8 9
|
sselid |
|
11 |
|
eqid |
|
12 |
1 11
|
grpinvcl |
|
13 |
7 10 12
|
syl2anc |
|
14 |
1
|
subgss |
|
15 |
14
|
adantr |
|
16 |
15
|
sselda |
|
17 |
1 2
|
grpass |
|
18 |
7 13 16 10 17
|
syl13anc |
|
19 |
|
eqid |
|
20 |
1 2 19 11
|
grprinv |
|
21 |
7 10 20
|
syl2anc |
|
22 |
21
|
oveq1d |
|
23 |
1 2
|
grpass |
|
24 |
7 10 13 16 23
|
syl13anc |
|
25 |
1 2 19
|
grplid |
|
26 |
7 16 25
|
syl2anc |
|
27 |
22 24 26
|
3eqtr3d |
|
28 |
|
simpr |
|
29 |
27 28
|
eqeltrd |
|
30 |
1 2
|
grpcl |
|
31 |
7 13 16 30
|
syl3anc |
|
32 |
5
|
nmzbi |
|
33 |
9 31 32
|
syl2anc |
|
34 |
29 33
|
mpbid |
|
35 |
18 34
|
eqeltrrd |
|
36 |
|
oveq2 |
|
37 |
36
|
oveq1d |
|
38 |
|
ovex |
|
39 |
37 4 38
|
fvmpt |
|
40 |
35 39
|
syl |
|
41 |
21
|
oveq1d |
|
42 |
1 2
|
grpcl |
|
43 |
7 16 10 42
|
syl3anc |
|
44 |
1 2
|
grpass |
|
45 |
7 10 13 43 44
|
syl13anc |
|
46 |
1 2 19
|
grplid |
|
47 |
7 43 46
|
syl2anc |
|
48 |
41 45 47
|
3eqtr3d |
|
49 |
48
|
oveq1d |
|
50 |
1 2 3
|
grppncan |
|
51 |
7 16 10 50
|
syl3anc |
|
52 |
40 49 51
|
3eqtrd |
|
53 |
|
ovex |
|
54 |
53 4
|
fnmpti |
|
55 |
|
fnfvelrn |
|
56 |
54 35 55
|
sylancr |
|
57 |
52 56
|
eqeltrrd |
|
58 |
57
|
ex |
|
59 |
58
|
ssrdv |
|
60 |
6
|
ad2antrr |
|
61 |
|
simplr |
|
62 |
8 61
|
sselid |
|
63 |
15
|
sselda |
|
64 |
1 2 3
|
grpaddsubass |
|
65 |
60 62 63 62 64
|
syl13anc |
|
66 |
1 2 3
|
grpnpcan |
|
67 |
60 63 62 66
|
syl3anc |
|
68 |
|
simpr |
|
69 |
67 68
|
eqeltrd |
|
70 |
1 3
|
grpsubcl |
|
71 |
60 63 62 70
|
syl3anc |
|
72 |
5
|
nmzbi |
|
73 |
61 71 72
|
syl2anc |
|
74 |
69 73
|
mpbird |
|
75 |
65 74
|
eqeltrd |
|
76 |
75 4
|
fmptd |
|
77 |
76
|
frnd |
|
78 |
59 77
|
eqssd |
|