Step |
Hyp |
Ref |
Expression |
1 |
|
conjghm.x |
|
2 |
|
conjghm.p |
|
3 |
|
conjghm.m |
|
4 |
|
conjsubg.f |
|
5 |
|
conjnmz.1 |
|
6 |
5
|
ssrab3 |
|
7 |
|
simpr |
|
8 |
6 7
|
sselid |
|
9 |
1 2 3 4 5
|
conjnmz |
|
10 |
8 9
|
jca |
|
11 |
|
simprl |
|
12 |
|
simplrr |
|
13 |
12
|
eleq2d |
|
14 |
|
subgrcl |
|
15 |
14
|
ad3antrrr |
|
16 |
|
simpllr |
|
17 |
1
|
subgss |
|
18 |
17
|
ad2antrr |
|
19 |
18
|
sselda |
|
20 |
1 2 3
|
grpaddsubass |
|
21 |
15 16 19 16 20
|
syl13anc |
|
22 |
21
|
eqeq1d |
|
23 |
1 3
|
grpsubcl |
|
24 |
15 19 16 23
|
syl3anc |
|
25 |
|
simplr |
|
26 |
1 2
|
grplcan |
|
27 |
15 24 25 16 26
|
syl13anc |
|
28 |
1 2 3
|
grpsubadd |
|
29 |
15 19 16 25 28
|
syl13anc |
|
30 |
22 27 29
|
3bitrd |
|
31 |
|
eqcom |
|
32 |
|
eqcom |
|
33 |
30 31 32
|
3bitr4g |
|
34 |
33
|
rexbidva |
|
35 |
34
|
adantlrr |
|
36 |
|
ovex |
|
37 |
|
eqeq1 |
|
38 |
37
|
rexbidv |
|
39 |
4
|
rnmpt |
|
40 |
36 38 39
|
elab2 |
|
41 |
|
risset |
|
42 |
35 40 41
|
3bitr4g |
|
43 |
13 42
|
bitrd |
|
44 |
43
|
ralrimiva |
|
45 |
5
|
elnmz |
|
46 |
11 44 45
|
sylanbrc |
|
47 |
10 46
|
impbida |
|