Metamath Proof Explorer


Theorem conjnmzb

Description: Alternative condition for elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses conjghm.x X = Base G
conjghm.p + ˙ = + G
conjghm.m - ˙ = - G
conjsubg.f F = x S A + ˙ x - ˙ A
conjnmz.1 N = y X | z X y + ˙ z S z + ˙ y S
Assertion conjnmzb S SubGrp G A N A X S = ran F

Proof

Step Hyp Ref Expression
1 conjghm.x X = Base G
2 conjghm.p + ˙ = + G
3 conjghm.m - ˙ = - G
4 conjsubg.f F = x S A + ˙ x - ˙ A
5 conjnmz.1 N = y X | z X y + ˙ z S z + ˙ y S
6 5 ssrab3 N X
7 simpr S SubGrp G A N A N
8 6 7 sselid S SubGrp G A N A X
9 1 2 3 4 5 conjnmz S SubGrp G A N S = ran F
10 8 9 jca S SubGrp G A N A X S = ran F
11 simprl S SubGrp G A X S = ran F A X
12 simplrr S SubGrp G A X S = ran F w X S = ran F
13 12 eleq2d S SubGrp G A X S = ran F w X A + ˙ w S A + ˙ w ran F
14 subgrcl S SubGrp G G Grp
15 14 ad3antrrr S SubGrp G A X w X x S G Grp
16 simpllr S SubGrp G A X w X x S A X
17 1 subgss S SubGrp G S X
18 17 ad2antrr S SubGrp G A X w X S X
19 18 sselda S SubGrp G A X w X x S x X
20 1 2 3 grpaddsubass G Grp A X x X A X A + ˙ x - ˙ A = A + ˙ x - ˙ A
21 15 16 19 16 20 syl13anc S SubGrp G A X w X x S A + ˙ x - ˙ A = A + ˙ x - ˙ A
22 21 eqeq1d S SubGrp G A X w X x S A + ˙ x - ˙ A = A + ˙ w A + ˙ x - ˙ A = A + ˙ w
23 1 3 grpsubcl G Grp x X A X x - ˙ A X
24 15 19 16 23 syl3anc S SubGrp G A X w X x S x - ˙ A X
25 simplr S SubGrp G A X w X x S w X
26 1 2 grplcan G Grp x - ˙ A X w X A X A + ˙ x - ˙ A = A + ˙ w x - ˙ A = w
27 15 24 25 16 26 syl13anc S SubGrp G A X w X x S A + ˙ x - ˙ A = A + ˙ w x - ˙ A = w
28 1 2 3 grpsubadd G Grp x X A X w X x - ˙ A = w w + ˙ A = x
29 15 19 16 25 28 syl13anc S SubGrp G A X w X x S x - ˙ A = w w + ˙ A = x
30 22 27 29 3bitrd S SubGrp G A X w X x S A + ˙ x - ˙ A = A + ˙ w w + ˙ A = x
31 eqcom A + ˙ w = A + ˙ x - ˙ A A + ˙ x - ˙ A = A + ˙ w
32 eqcom x = w + ˙ A w + ˙ A = x
33 30 31 32 3bitr4g S SubGrp G A X w X x S A + ˙ w = A + ˙ x - ˙ A x = w + ˙ A
34 33 rexbidva S SubGrp G A X w X x S A + ˙ w = A + ˙ x - ˙ A x S x = w + ˙ A
35 34 adantlrr S SubGrp G A X S = ran F w X x S A + ˙ w = A + ˙ x - ˙ A x S x = w + ˙ A
36 ovex A + ˙ w V
37 eqeq1 y = A + ˙ w y = A + ˙ x - ˙ A A + ˙ w = A + ˙ x - ˙ A
38 37 rexbidv y = A + ˙ w x S y = A + ˙ x - ˙ A x S A + ˙ w = A + ˙ x - ˙ A
39 4 rnmpt ran F = y | x S y = A + ˙ x - ˙ A
40 36 38 39 elab2 A + ˙ w ran F x S A + ˙ w = A + ˙ x - ˙ A
41 risset w + ˙ A S x S x = w + ˙ A
42 35 40 41 3bitr4g S SubGrp G A X S = ran F w X A + ˙ w ran F w + ˙ A S
43 13 42 bitrd S SubGrp G A X S = ran F w X A + ˙ w S w + ˙ A S
44 43 ralrimiva S SubGrp G A X S = ran F w X A + ˙ w S w + ˙ A S
45 5 elnmz A N A X w X A + ˙ w S w + ˙ A S
46 11 44 45 sylanbrc S SubGrp G A X S = ran F A N
47 10 46 impbida S SubGrp G A N A X S = ran F