Metamath Proof Explorer


Theorem conjnsg

Description: A normal subgroup is unchanged under conjugation. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses conjghm.x X = Base G
conjghm.p + ˙ = + G
conjghm.m - ˙ = - G
conjsubg.f F = x S A + ˙ x - ˙ A
Assertion conjnsg S NrmSGrp G A X S = ran F

Proof

Step Hyp Ref Expression
1 conjghm.x X = Base G
2 conjghm.p + ˙ = + G
3 conjghm.m - ˙ = - G
4 conjsubg.f F = x S A + ˙ x - ˙ A
5 nsgsubg S NrmSGrp G S SubGrp G
6 eqid y X | z X y + ˙ z S z + ˙ y S = y X | z X y + ˙ z S z + ˙ y S
7 6 1 2 isnsg4 S NrmSGrp G S SubGrp G y X | z X y + ˙ z S z + ˙ y S = X
8 7 simprbi S NrmSGrp G y X | z X y + ˙ z S z + ˙ y S = X
9 8 eleq2d S NrmSGrp G A y X | z X y + ˙ z S z + ˙ y S A X
10 9 biimpar S NrmSGrp G A X A y X | z X y + ˙ z S z + ˙ y S
11 1 2 3 4 6 conjnmz S SubGrp G A y X | z X y + ˙ z S z + ˙ y S S = ran F
12 5 10 11 syl2an2r S NrmSGrp G A X S = ran F