Metamath Proof Explorer


Theorem connclo

Description: The only nonempty clopen set of a connected topology is the whole space. (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypotheses isconn.1 X = J
connclo.1 φ J Conn
connclo.2 φ A J
connclo.3 φ A
connclo.4 φ A Clsd J
Assertion connclo φ A = X

Proof

Step Hyp Ref Expression
1 isconn.1 X = J
2 connclo.1 φ J Conn
3 connclo.2 φ A J
4 connclo.3 φ A
5 connclo.4 φ A Clsd J
6 4 neneqd φ ¬ A =
7 3 5 elind φ A J Clsd J
8 1 isconn J Conn J Top J Clsd J = X
9 8 simprbi J Conn J Clsd J = X
10 2 9 syl φ J Clsd J = X
11 7 10 eleqtrd φ A X
12 elpri A X A = A = X
13 11 12 syl φ A = A = X
14 13 ord φ ¬ A = A = X
15 6 14 mpd φ A = X