Metamath Proof Explorer


Theorem conncn

Description: A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015)

Ref Expression
Hypotheses conncn.x X = J
conncn.j φ J Conn
conncn.f φ F J Cn K
conncn.u φ U K
conncn.c φ U Clsd K
conncn.a φ A X
conncn.1 φ F A U
Assertion conncn φ F : X U

Proof

Step Hyp Ref Expression
1 conncn.x X = J
2 conncn.j φ J Conn
3 conncn.f φ F J Cn K
4 conncn.u φ U K
5 conncn.c φ U Clsd K
6 conncn.a φ A X
7 conncn.1 φ F A U
8 eqid K = K
9 1 8 cnf F J Cn K F : X K
10 3 9 syl φ F : X K
11 10 ffnd φ F Fn X
12 10 frnd φ ran F K
13 dffn4 F Fn X F : X onto ran F
14 11 13 sylib φ F : X onto ran F
15 cntop2 F J Cn K K Top
16 3 15 syl φ K Top
17 8 restuni K Top ran F K ran F = K 𝑡 ran F
18 16 12 17 syl2anc φ ran F = K 𝑡 ran F
19 foeq3 ran F = K 𝑡 ran F F : X onto ran F F : X onto K 𝑡 ran F
20 18 19 syl φ F : X onto ran F F : X onto K 𝑡 ran F
21 14 20 mpbid φ F : X onto K 𝑡 ran F
22 toptopon2 K Top K TopOn K
23 16 22 sylib φ K TopOn K
24 ssidd φ ran F ran F
25 cnrest2 K TopOn K ran F ran F ran F K F J Cn K F J Cn K 𝑡 ran F
26 23 24 12 25 syl3anc φ F J Cn K F J Cn K 𝑡 ran F
27 3 26 mpbid φ F J Cn K 𝑡 ran F
28 eqid K 𝑡 ran F = K 𝑡 ran F
29 28 cnconn J Conn F : X onto K 𝑡 ran F F J Cn K 𝑡 ran F K 𝑡 ran F Conn
30 2 21 27 29 syl3anc φ K 𝑡 ran F Conn
31 fnfvelrn F Fn X A X F A ran F
32 11 6 31 syl2anc φ F A ran F
33 inelcm F A U F A ran F U ran F
34 7 32 33 syl2anc φ U ran F
35 8 12 30 4 34 5 connsubclo φ ran F U
36 df-f F : X U F Fn X ran F U
37 11 35 36 sylanbrc φ F : X U