Metamath Proof Explorer


Theorem conncompcld

Description: The connected component containing A is a closed set. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypothesis conncomp.2 S = x 𝒫 X | A x J 𝑡 x Conn
Assertion conncompcld J TopOn X A X S Clsd J

Proof

Step Hyp Ref Expression
1 conncomp.2 S = x 𝒫 X | A x J 𝑡 x Conn
2 topontop J TopOn X J Top
3 ssrab2 x 𝒫 X | A x J 𝑡 x Conn 𝒫 X
4 sspwuni x 𝒫 X | A x J 𝑡 x Conn 𝒫 X x 𝒫 X | A x J 𝑡 x Conn X
5 3 4 mpbi x 𝒫 X | A x J 𝑡 x Conn X
6 1 5 eqsstri S X
7 toponuni J TopOn X X = J
8 7 adantr J TopOn X A X X = J
9 6 8 sseqtrid J TopOn X A X S J
10 eqid J = J
11 10 clsss3 J Top S J cls J S J
12 2 9 11 syl2an2r J TopOn X A X cls J S J
13 12 8 sseqtrrd J TopOn X A X cls J S X
14 10 sscls J Top S J S cls J S
15 2 9 14 syl2an2r J TopOn X A X S cls J S
16 1 conncompid J TopOn X A X A S
17 15 16 sseldd J TopOn X A X A cls J S
18 simpl J TopOn X A X J TopOn X
19 6 a1i J TopOn X A X S X
20 1 conncompconn J TopOn X A X J 𝑡 S Conn
21 clsconn J TopOn X S X J 𝑡 S Conn J 𝑡 cls J S Conn
22 18 19 20 21 syl3anc J TopOn X A X J 𝑡 cls J S Conn
23 1 conncompss cls J S X A cls J S J 𝑡 cls J S Conn cls J S S
24 13 17 22 23 syl3anc J TopOn X A X cls J S S
25 10 iscld4 J Top S J S Clsd J cls J S S
26 2 9 25 syl2an2r J TopOn X A X S Clsd J cls J S S
27 24 26 mpbird J TopOn X A X S Clsd J