Metamath Proof Explorer


Theorem conncompid

Description: The connected component containing A contains A . (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypothesis conncomp.2 S = x 𝒫 X | A x J 𝑡 x Conn
Assertion conncompid J TopOn X A X A S

Proof

Step Hyp Ref Expression
1 conncomp.2 S = x 𝒫 X | A x J 𝑡 x Conn
2 simpr J TopOn X A X A X
3 2 snssd J TopOn X A X A X
4 snex A V
5 4 elpw A 𝒫 X A X
6 3 5 sylibr J TopOn X A X A 𝒫 X
7 snidg A X A A
8 7 adantl J TopOn X A X A A
9 restsn2 J TopOn X A X J 𝑡 A = 𝒫 A
10 pwsn 𝒫 A = A
11 indisconn A Conn
12 10 11 eqeltri 𝒫 A Conn
13 9 12 eqeltrdi J TopOn X A X J 𝑡 A Conn
14 8 13 jca J TopOn X A X A A J 𝑡 A Conn
15 eleq2 x = A A x A A
16 oveq2 x = A J 𝑡 x = J 𝑡 A
17 16 eleq1d x = A J 𝑡 x Conn J 𝑡 A Conn
18 15 17 anbi12d x = A A x J 𝑡 x Conn A A J 𝑡 A Conn
19 15 18 anbi12d x = A A x A x J 𝑡 x Conn A A A A J 𝑡 A Conn
20 19 rspcev A 𝒫 X A A A A J 𝑡 A Conn x 𝒫 X A x A x J 𝑡 x Conn
21 6 8 14 20 syl12anc J TopOn X A X x 𝒫 X A x A x J 𝑡 x Conn
22 elunirab A x 𝒫 X | A x J 𝑡 x Conn x 𝒫 X A x A x J 𝑡 x Conn
23 21 22 sylibr J TopOn X A X A x 𝒫 X | A x J 𝑡 x Conn
24 23 1 eleqtrrdi J TopOn X A X A S