Step |
Hyp |
Ref |
Expression |
1 |
|
isconn.1 |
|
2 |
|
connclo.1 |
|
3 |
|
connclo.2 |
|
4 |
|
connclo.3 |
|
5 |
|
conndisj.4 |
|
6 |
|
conndisj.5 |
|
7 |
|
conndisj.6 |
|
8 |
|
elssuni |
|
9 |
3 8
|
syl |
|
10 |
9 1
|
sseqtrrdi |
|
11 |
|
uneqdifeq |
|
12 |
10 7 11
|
syl2anc |
|
13 |
|
simpr |
|
14 |
13
|
difeq2d |
|
15 |
|
dfss4 |
|
16 |
10 15
|
sylib |
|
17 |
16
|
adantr |
|
18 |
2
|
adantr |
|
19 |
5
|
adantr |
|
20 |
6
|
adantr |
|
21 |
1
|
isconn |
|
22 |
21
|
simplbi |
|
23 |
2 22
|
syl |
|
24 |
1
|
opncld |
|
25 |
23 3 24
|
syl2anc |
|
26 |
25
|
adantr |
|
27 |
13 26
|
eqeltrrd |
|
28 |
1 18 19 20 27
|
connclo |
|
29 |
28
|
difeq2d |
|
30 |
|
difid |
|
31 |
29 30
|
eqtrdi |
|
32 |
14 17 31
|
3eqtr3d |
|
33 |
32
|
ex |
|
34 |
12 33
|
sylbid |
|
35 |
34
|
necon3d |
|
36 |
4 35
|
mpd |
|