Database
BASIC TOPOLOGY
Topology
Homeomorphisms
connhmph
Next ⟩
t0hmph
Metamath Proof Explorer
Ascii
Unicode
Theorem
connhmph
Description:
Connectedness is a topological property.
(Contributed by
Jeff Hankins
, 3-Jul-2009)
Ref
Expression
Assertion
connhmph
⊢
J
≃
K
→
J
∈
Conn
→
K
∈
Conn
Proof
Step
Hyp
Ref
Expression
1
hmph
⊢
J
≃
K
↔
J
Homeo
K
≠
∅
2
n0
⊢
J
Homeo
K
≠
∅
↔
∃
f
f
∈
J
Homeo
K
3
eqid
⊢
⋃
J
=
⋃
J
4
eqid
⊢
⋃
K
=
⋃
K
5
3
4
hmeof1o
⊢
f
∈
J
Homeo
K
→
f
:
⋃
J
⟶
1-1 onto
⋃
K
6
f1ofo
⊢
f
:
⋃
J
⟶
1-1 onto
⋃
K
→
f
:
⋃
J
⟶
onto
⋃
K
7
5
6
syl
⊢
f
∈
J
Homeo
K
→
f
:
⋃
J
⟶
onto
⋃
K
8
hmeocn
⊢
f
∈
J
Homeo
K
→
f
∈
J
Cn
K
9
4
cnconn
⊢
J
∈
Conn
∧
f
:
⋃
J
⟶
onto
⋃
K
∧
f
∈
J
Cn
K
→
K
∈
Conn
10
9
3expb
⊢
J
∈
Conn
∧
f
:
⋃
J
⟶
onto
⋃
K
∧
f
∈
J
Cn
K
→
K
∈
Conn
11
10
expcom
⊢
f
:
⋃
J
⟶
onto
⋃
K
∧
f
∈
J
Cn
K
→
J
∈
Conn
→
K
∈
Conn
12
7
8
11
syl2anc
⊢
f
∈
J
Homeo
K
→
J
∈
Conn
→
K
∈
Conn
13
12
exlimiv
⊢
∃
f
f
∈
J
Homeo
K
→
J
∈
Conn
→
K
∈
Conn
14
2
13
sylbi
⊢
J
Homeo
K
≠
∅
→
J
∈
Conn
→
K
∈
Conn
15
1
14
sylbi
⊢
J
≃
K
→
J
∈
Conn
→
K
∈
Conn