Metamath Proof Explorer


Theorem connhmph

Description: Connectedness is a topological property. (Contributed by Jeff Hankins, 3-Jul-2009)

Ref Expression
Assertion connhmph J K J Conn K Conn

Proof

Step Hyp Ref Expression
1 hmph J K J Homeo K
2 n0 J Homeo K f f J Homeo K
3 eqid J = J
4 eqid K = K
5 3 4 hmeof1o f J Homeo K f : J 1-1 onto K
6 f1ofo f : J 1-1 onto K f : J onto K
7 5 6 syl f J Homeo K f : J onto K
8 hmeocn f J Homeo K f J Cn K
9 4 cnconn J Conn f : J onto K f J Cn K K Conn
10 9 3expb J Conn f : J onto K f J Cn K K Conn
11 10 expcom f : J onto K f J Cn K J Conn K Conn
12 7 8 11 syl2anc f J Homeo K J Conn K Conn
13 12 exlimiv f f J Homeo K J Conn K Conn
14 2 13 sylbi J Homeo K J Conn K Conn
15 1 14 sylbi J K J Conn K Conn