Metamath Proof Explorer


Theorem connima

Description: The image of a connected set is connected. (Contributed by Mario Carneiro, 7-Jul-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses connima.x X = J
connima.f φ F J Cn K
connima.a φ A X
connima.c φ J 𝑡 A Conn
Assertion connima φ K 𝑡 F A Conn

Proof

Step Hyp Ref Expression
1 connima.x X = J
2 connima.f φ F J Cn K
3 connima.a φ A X
4 connima.c φ J 𝑡 A Conn
5 eqid K = K
6 1 5 cnf F J Cn K F : X K
7 2 6 syl φ F : X K
8 7 ffund φ Fun F
9 7 fdmd φ dom F = X
10 3 9 sseqtrrd φ A dom F
11 fores Fun F A dom F F A : A onto F A
12 8 10 11 syl2anc φ F A : A onto F A
13 cntop2 F J Cn K K Top
14 2 13 syl φ K Top
15 imassrn F A ran F
16 7 frnd φ ran F K
17 15 16 sstrid φ F A K
18 5 restuni K Top F A K F A = K 𝑡 F A
19 14 17 18 syl2anc φ F A = K 𝑡 F A
20 foeq3 F A = K 𝑡 F A F A : A onto F A F A : A onto K 𝑡 F A
21 19 20 syl φ F A : A onto F A F A : A onto K 𝑡 F A
22 12 21 mpbid φ F A : A onto K 𝑡 F A
23 1 cnrest F J Cn K A X F A J 𝑡 A Cn K
24 2 3 23 syl2anc φ F A J 𝑡 A Cn K
25 toptopon2 K Top K TopOn K
26 14 25 sylib φ K TopOn K
27 df-ima F A = ran F A
28 eqimss2 F A = ran F A ran F A F A
29 27 28 mp1i φ ran F A F A
30 cnrest2 K TopOn K ran F A F A F A K F A J 𝑡 A Cn K F A J 𝑡 A Cn K 𝑡 F A
31 26 29 17 30 syl3anc φ F A J 𝑡 A Cn K F A J 𝑡 A Cn K 𝑡 F A
32 24 31 mpbid φ F A J 𝑡 A Cn K 𝑡 F A
33 eqid K 𝑡 F A = K 𝑡 F A
34 33 cnconn J 𝑡 A Conn F A : A onto K 𝑡 F A F A J 𝑡 A Cn K 𝑡 F A K 𝑡 F A Conn
35 4 22 32 34 syl3anc φ K 𝑡 F A Conn