| Step | Hyp | Ref | Expression | 
						
							| 1 |  | connima.x |  | 
						
							| 2 |  | connima.f |  | 
						
							| 3 |  | connima.a |  | 
						
							| 4 |  | connima.c |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 | 1 5 | cnf |  | 
						
							| 7 | 2 6 | syl |  | 
						
							| 8 | 7 | ffund |  | 
						
							| 9 | 7 | fdmd |  | 
						
							| 10 | 3 9 | sseqtrrd |  | 
						
							| 11 |  | fores |  | 
						
							| 12 | 8 10 11 | syl2anc |  | 
						
							| 13 |  | cntop2 |  | 
						
							| 14 | 2 13 | syl |  | 
						
							| 15 |  | imassrn |  | 
						
							| 16 | 7 | frnd |  | 
						
							| 17 | 15 16 | sstrid |  | 
						
							| 18 | 5 | restuni |  | 
						
							| 19 | 14 17 18 | syl2anc |  | 
						
							| 20 |  | foeq3 |  | 
						
							| 21 | 19 20 | syl |  | 
						
							| 22 | 12 21 | mpbid |  | 
						
							| 23 | 1 | cnrest |  | 
						
							| 24 | 2 3 23 | syl2anc |  | 
						
							| 25 |  | toptopon2 |  | 
						
							| 26 | 14 25 | sylib |  | 
						
							| 27 |  | df-ima |  | 
						
							| 28 |  | eqimss2 |  | 
						
							| 29 | 27 28 | mp1i |  | 
						
							| 30 |  | cnrest2 |  | 
						
							| 31 | 26 29 17 30 | syl3anc |  | 
						
							| 32 | 24 31 | mpbid |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 | 33 | cnconn |  | 
						
							| 35 | 4 22 32 34 | syl3anc |  |