Description: Two equivalent ways of saying that a subspace topology is connected. (Contributed by Jeff Hankins, 9-Jul-2009) (Proof shortened by Mario Carneiro, 10-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | connsub | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | connsuba | |
|
| 2 | inss1 | |
|
| 3 | toponss | |
|
| 4 | 3 | ad2ant2r | |
| 5 | 2 4 | sstrid | |
| 6 | reldisj | |
|
| 7 | 5 6 | syl | |
| 8 | 7 | 3anbi3d | |
| 9 | sseqin2 | |
|
| 10 | 9 | a1i | |
| 11 | 10 | bicomd | |
| 12 | 11 | necon3abid | |
| 13 | 8 12 | imbi12d | |
| 14 | 13 | 2ralbidva | |
| 15 | 1 14 | bitrd | |