Metamath Proof Explorer


Theorem connsubclo

Description: If a clopen set meets a connected subspace, it must contain the entire subspace. (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypotheses connsubclo.1 X = J
connsubclo.3 φ A X
connsubclo.4 φ J 𝑡 A Conn
connsubclo.5 φ B J
connsubclo.6 φ B A
connsubclo.7 φ B Clsd J
Assertion connsubclo φ A B

Proof

Step Hyp Ref Expression
1 connsubclo.1 X = J
2 connsubclo.3 φ A X
3 connsubclo.4 φ J 𝑡 A Conn
4 connsubclo.5 φ B J
5 connsubclo.6 φ B A
6 connsubclo.7 φ B Clsd J
7 eqid J 𝑡 A = J 𝑡 A
8 cldrcl B Clsd J J Top
9 6 8 syl φ J Top
10 1 topopn J Top X J
11 9 10 syl φ X J
12 11 2 ssexd φ A V
13 elrestr J Top A V B J B A J 𝑡 A
14 9 12 4 13 syl3anc φ B A J 𝑡 A
15 eqid B A = B A
16 ineq1 x = B x A = B A
17 16 rspceeqv B Clsd J B A = B A x Clsd J B A = x A
18 6 15 17 sylancl φ x Clsd J B A = x A
19 1 restcld J Top A X B A Clsd J 𝑡 A x Clsd J B A = x A
20 9 2 19 syl2anc φ B A Clsd J 𝑡 A x Clsd J B A = x A
21 18 20 mpbird φ B A Clsd J 𝑡 A
22 7 3 14 5 21 connclo φ B A = J 𝑡 A
23 1 restuni J Top A X A = J 𝑡 A
24 9 2 23 syl2anc φ A = J 𝑡 A
25 22 24 eqtr4d φ B A = A
26 sseqin2 A B B A = A
27 25 26 sylibr φ A B