Metamath Proof Explorer


Theorem consensus

Description: The consensus theorem. This theorem and its dual (with \/ and /\ interchanged) are commonly used in computer logic design to eliminate redundant terms from Boolean expressions. Specifically, we prove that the term ( ps /\ ch ) on the left-hand side is redundant. (Contributed by NM, 16-May-2003) (Proof shortened by Andrew Salmon, 13-May-2011) (Proof shortened by Wolf Lammen, 20-Jan-2013)

Ref Expression
Assertion consensus φ ψ ¬ φ χ ψ χ φ ψ ¬ φ χ

Proof

Step Hyp Ref Expression
1 id φ ψ ¬ φ χ φ ψ ¬ φ χ
2 orc φ ψ φ ψ ¬ φ χ
3 2 adantrr φ ψ χ φ ψ ¬ φ χ
4 olc ¬ φ χ φ ψ ¬ φ χ
5 4 adantrl ¬ φ ψ χ φ ψ ¬ φ χ
6 3 5 pm2.61ian ψ χ φ ψ ¬ φ χ
7 1 6 jaoi φ ψ ¬ φ χ ψ χ φ ψ ¬ φ χ
8 orc φ ψ ¬ φ χ φ ψ ¬ φ χ ψ χ
9 7 8 impbii φ ψ ¬ φ χ ψ χ φ ψ ¬ φ χ