Metamath Proof Explorer
Description: A constant function is a continuous function on CC . (Contributed by Glauco Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
constcncfg.a |
|
|
|
constcncfg.b |
|
|
|
constcncfg.c |
|
|
Assertion |
constcncfg |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
constcncfg.a |
|
2 |
|
constcncfg.b |
|
3 |
|
constcncfg.c |
|
4 |
|
cncfmptc |
|
5 |
2 1 3 4
|
syl3anc |
|