Metamath Proof Explorer


Theorem constcncfg

Description: A constant function is a continuous function on CC . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses constcncfg.a φ A
constcncfg.b φ B C
constcncfg.c φ C
Assertion constcncfg φ x A B : A cn C

Proof

Step Hyp Ref Expression
1 constcncfg.a φ A
2 constcncfg.b φ B C
3 constcncfg.c φ C
4 cncfmptc B C A C x A B : A cn C
5 2 1 3 4 syl3anc φ x A B : A cn C