Step |
Hyp |
Ref |
Expression |
1 |
|
constlimc.f |
|
2 |
|
constlimc.a |
|
3 |
|
constlimc.b |
|
4 |
|
constlimc.c |
|
5 |
|
1rp |
|
6 |
5
|
a1i |
|
7 |
|
simpr |
|
8 |
|
vex |
|
9 |
|
nfcv |
|
10 |
|
csbtt |
|
11 |
8 9 10
|
mp2an |
|
12 |
11 3
|
eqeltrid |
|
13 |
12
|
adantr |
|
14 |
1
|
fvmpts |
|
15 |
7 13 14
|
syl2anc |
|
16 |
15
|
oveq1d |
|
17 |
11
|
oveq1i |
|
18 |
16 17
|
eqtrdi |
|
19 |
18
|
fveq2d |
|
20 |
3
|
subidd |
|
21 |
20
|
fveq2d |
|
22 |
21
|
adantr |
|
23 |
|
abs0 |
|
24 |
23
|
a1i |
|
25 |
19 22 24
|
3eqtrd |
|
26 |
25
|
adantlr |
|
27 |
|
rpgt0 |
|
28 |
27
|
ad2antlr |
|
29 |
26 28
|
eqbrtrd |
|
30 |
29
|
a1d |
|
31 |
30
|
ralrimiva |
|
32 |
|
brimralrspcev |
|
33 |
6 31 32
|
syl2anc |
|
34 |
33
|
ralrimiva |
|
35 |
3
|
adantr |
|
36 |
35 1
|
fmptd |
|
37 |
36 2 4
|
ellimc3 |
|
38 |
3 34 37
|
mpbir2and |
|