Step |
Hyp |
Ref |
Expression |
1 |
|
nn0z |
|
2 |
|
nn0z |
|
3 |
|
gcdcl |
|
4 |
1 2 3
|
syl2an |
|
5 |
4
|
3adant2 |
|
6 |
5
|
3ad2ant1 |
|
7 |
6
|
nn0cnd |
|
8 |
7
|
sqvald |
|
9 |
|
simp13 |
|
10 |
9
|
nn0cnd |
|
11 |
|
nn0cn |
|
12 |
11
|
3ad2ant1 |
|
13 |
12
|
3ad2ant1 |
|
14 |
10 13
|
mulcomd |
|
15 |
|
simpl3 |
|
16 |
15
|
nn0cnd |
|
17 |
16
|
sqvald |
|
18 |
17
|
eqeq1d |
|
19 |
18
|
biimp3a |
|
20 |
14 19
|
oveq12d |
|
21 |
|
simp11 |
|
22 |
21
|
nn0zd |
|
23 |
9
|
nn0zd |
|
24 |
|
mulgcd |
|
25 |
9 22 23 24
|
syl3anc |
|
26 |
|
simp12 |
|
27 |
|
mulgcd |
|
28 |
21 23 26 27
|
syl3anc |
|
29 |
20 25 28
|
3eqtr3d |
|
30 |
29
|
oveq2d |
|
31 |
|
mulgcdr |
|
32 |
22 23 6 31
|
syl3anc |
|
33 |
6
|
nn0zd |
|
34 |
|
gcdcl |
|
35 |
2 34
|
sylan |
|
36 |
35
|
ancoms |
|
37 |
36
|
3adant1 |
|
38 |
37
|
3ad2ant1 |
|
39 |
38
|
nn0zd |
|
40 |
|
mulgcd |
|
41 |
21 33 39 40
|
syl3anc |
|
42 |
30 32 41
|
3eqtr3d |
|
43 |
2
|
3ad2ant3 |
|
44 |
|
gcdid |
|
45 |
43 44
|
syl |
|
46 |
45
|
oveq1d |
|
47 |
|
simp2 |
|
48 |
|
gcdabs1 |
|
49 |
43 47 48
|
syl2anc |
|
50 |
46 49
|
eqtrd |
|
51 |
|
gcdass |
|
52 |
43 43 47 51
|
syl3anc |
|
53 |
43 47
|
gcdcomd |
|
54 |
50 52 53
|
3eqtr3d |
|
55 |
54
|
oveq2d |
|
56 |
1
|
3ad2ant1 |
|
57 |
37
|
nn0zd |
|
58 |
|
gcdass |
|
59 |
56 43 57 58
|
syl3anc |
|
60 |
|
gcdass |
|
61 |
56 47 43 60
|
syl3anc |
|
62 |
55 59 61
|
3eqtr4d |
|
63 |
62
|
eqeq1d |
|
64 |
63
|
biimpar |
|
65 |
64
|
oveq2d |
|
66 |
65
|
3adant3 |
|
67 |
13
|
mulid1d |
|
68 |
66 67
|
eqtrd |
|
69 |
8 42 68
|
3eqtrrd |
|
70 |
69
|
3expia |
|