Metamath Proof Explorer


Theorem coprmdvds1

Description: If two positive integers are coprime, i.e. their greatest common divisor is 1, the only positive integer that divides both of them is 1. (Contributed by AV, 4-Aug-2021)

Ref Expression
Assertion coprmdvds1 F G F gcd G = 1 I I F I G I = 1

Proof

Step Hyp Ref Expression
1 coprmgcdb F G i i F i G i = 1 F gcd G = 1
2 breq1 i = I i F I F
3 breq1 i = I i G I G
4 2 3 anbi12d i = I i F i G I F I G
5 eqeq1 i = I i = 1 I = 1
6 4 5 imbi12d i = I i F i G i = 1 I F I G I = 1
7 6 rspcv I i i F i G i = 1 I F I G I = 1
8 7 com23 I I F I G i i F i G i = 1 I = 1
9 8 3impib I I F I G i i F i G i = 1 I = 1
10 9 com12 i i F i G i = 1 I I F I G I = 1
11 1 10 syl6bir F G F gcd G = 1 I I F I G I = 1
12 11 3impia F G F gcd G = 1 I I F I G I = 1