Step |
Hyp |
Ref |
Expression |
1 |
|
sseq1 |
|
2 |
1
|
3anbi1d |
|
3 |
|
raleq |
|
4 |
|
difeq1 |
|
5 |
4
|
raleqdv |
|
6 |
5
|
raleqbi1dv |
|
7 |
2 3 6
|
3anbi123d |
|
8 |
|
prodeq1 |
|
9 |
8
|
oveq1d |
|
10 |
9
|
eqeq1d |
|
11 |
7 10
|
imbi12d |
|
12 |
|
sseq1 |
|
13 |
12
|
3anbi1d |
|
14 |
|
raleq |
|
15 |
|
difeq1 |
|
16 |
15
|
raleqdv |
|
17 |
16
|
raleqbi1dv |
|
18 |
13 14 17
|
3anbi123d |
|
19 |
|
prodeq1 |
|
20 |
19
|
oveq1d |
|
21 |
20
|
eqeq1d |
|
22 |
18 21
|
imbi12d |
|
23 |
|
sseq1 |
|
24 |
23
|
3anbi1d |
|
25 |
|
raleq |
|
26 |
|
difeq1 |
|
27 |
26
|
raleqdv |
|
28 |
27
|
raleqbi1dv |
|
29 |
24 25 28
|
3anbi123d |
|
30 |
|
prodeq1 |
|
31 |
30
|
oveq1d |
|
32 |
31
|
eqeq1d |
|
33 |
29 32
|
imbi12d |
|
34 |
|
sseq1 |
|
35 |
34
|
3anbi1d |
|
36 |
|
raleq |
|
37 |
|
difeq1 |
|
38 |
37
|
raleqdv |
|
39 |
38
|
raleqbi1dv |
|
40 |
35 36 39
|
3anbi123d |
|
41 |
|
prodeq1 |
|
42 |
41
|
oveq1d |
|
43 |
42
|
eqeq1d |
|
44 |
40 43
|
imbi12d |
|
45 |
|
prod0 |
|
46 |
45
|
a1i |
|
47 |
46
|
oveq1d |
|
48 |
|
nnz |
|
49 |
|
1gcd |
|
50 |
48 49
|
syl |
|
51 |
47 50
|
eqtrd |
|
52 |
51
|
3ad2ant2 |
|
53 |
52
|
3ad2ant1 |
|
54 |
|
nfv |
|
55 |
|
nfcv |
|
56 |
|
simprl |
|
57 |
|
unss |
|
58 |
|
vex |
|
59 |
58
|
snss |
|
60 |
59
|
biimpri |
|
61 |
60
|
adantl |
|
62 |
57 61
|
sylbir |
|
63 |
62
|
3ad2ant1 |
|
64 |
63
|
adantr |
|
65 |
|
simprr |
|
66 |
|
simpll3 |
|
67 |
|
simpl |
|
68 |
57 67
|
sylbir |
|
69 |
68
|
3ad2ant1 |
|
70 |
69
|
adantr |
|
71 |
70
|
sselda |
|
72 |
66 71
|
ffvelrnd |
|
73 |
72
|
nncnd |
|
74 |
|
fveq2 |
|
75 |
|
simpr |
|
76 |
62
|
adantr |
|
77 |
75 76
|
ffvelrnd |
|
78 |
77
|
3adant2 |
|
79 |
78
|
adantr |
|
80 |
79
|
nncnd |
|
81 |
54 55 56 64 65 73 74 80
|
fprodsplitsn |
|
82 |
81
|
oveq1d |
|
83 |
56 72
|
fprodnncl |
|
84 |
83
|
nnzd |
|
85 |
79
|
nnzd |
|
86 |
84 85
|
zmulcld |
|
87 |
48
|
3ad2ant2 |
|
88 |
87
|
adantr |
|
89 |
86 88
|
gcdcomd |
|
90 |
82 89
|
eqtrd |
|
91 |
90
|
ex |
|
92 |
91
|
3ad2ant1 |
|
93 |
92
|
com12 |
|
94 |
93
|
adantr |
|
95 |
94
|
imp |
|
96 |
|
simpl2 |
|
97 |
96 83 79
|
3jca |
|
98 |
97
|
ex |
|
99 |
98
|
3ad2ant1 |
|
100 |
99
|
com12 |
|
101 |
100
|
adantr |
|
102 |
101
|
imp |
|
103 |
88 84
|
gcdcomd |
|
104 |
103
|
ex |
|
105 |
104
|
3ad2ant1 |
|
106 |
105
|
com12 |
|
107 |
106
|
adantr |
|
108 |
107
|
imp |
|
109 |
68
|
a1i |
|
110 |
|
idd |
|
111 |
|
idd |
|
112 |
109 110 111
|
3anim123d |
|
113 |
|
ssun1 |
|
114 |
|
ssralv |
|
115 |
113 114
|
mp1i |
|
116 |
|
ssralv |
|
117 |
113 116
|
mp1i |
|
118 |
113
|
a1i |
|
119 |
118
|
ssdifd |
|
120 |
|
ssralv |
|
121 |
119 120
|
syl |
|
122 |
121
|
ralimdva |
|
123 |
117 122
|
syld |
|
124 |
112 115 123
|
3anim123d |
|
125 |
124
|
imim1d |
|
126 |
125
|
imp31 |
|
127 |
108 126
|
eqtrd |
|
128 |
|
rpmulgcd |
|
129 |
102 127 128
|
syl2anc |
|
130 |
|
vsnid |
|
131 |
130
|
olci |
|
132 |
|
elun |
|
133 |
131 132
|
mpbir |
|
134 |
74
|
oveq1d |
|
135 |
134
|
eqeq1d |
|
136 |
135
|
rspcv |
|
137 |
133 136
|
mp1i |
|
138 |
137
|
imp |
|
139 |
78
|
nnzd |
|
140 |
87 139
|
gcdcomd |
|
141 |
140
|
eqeq1d |
|
142 |
141
|
adantr |
|
143 |
138 142
|
mpbird |
|
144 |
143
|
3adant3 |
|
145 |
144
|
adantl |
|
146 |
95 129 145
|
3eqtrd |
|
147 |
146
|
exp31 |
|
148 |
11 22 33 44 53 147
|
findcard2s |
|
149 |
148
|
3expd |
|
150 |
149
|
3expd |
|
151 |
150
|
3imp |
|
152 |
151
|
3imp |
|