Metamath Proof Explorer


Theorem coprmproddvds

Description: If a positive integer is divisible by each element of a set of pairwise coprime positive integers, then it is divisible by their product. (Contributed by AV, 19-Aug-2020)

Ref Expression
Assertion coprmproddvds M M Fin K F : m M n M m F m gcd F n = 1 m M F m K m M F m K

Proof

Step Hyp Ref Expression
1 cleq1lem x = x K F : K F :
2 difeq1 x = x m = m
3 2 raleqdv x = n x m F m gcd F n = 1 n m F m gcd F n = 1
4 3 raleqbi1dv x = m x n x m F m gcd F n = 1 m n m F m gcd F n = 1
5 raleq x = m x F m K m F m K
6 4 5 anbi12d x = m x n x m F m gcd F n = 1 m x F m K m n m F m gcd F n = 1 m F m K
7 1 6 anbi12d x = x K F : m x n x m F m gcd F n = 1 m x F m K K F : m n m F m gcd F n = 1 m F m K
8 prodeq1 x = m x F m = m F m
9 8 breq1d x = m x F m K m F m K
10 7 9 imbi12d x = x K F : m x n x m F m gcd F n = 1 m x F m K m x F m K K F : m n m F m gcd F n = 1 m F m K m F m K
11 cleq1lem x = y x K F : y K F :
12 difeq1 x = y x m = y m
13 12 raleqdv x = y n x m F m gcd F n = 1 n y m F m gcd F n = 1
14 13 raleqbi1dv x = y m x n x m F m gcd F n = 1 m y n y m F m gcd F n = 1
15 raleq x = y m x F m K m y F m K
16 14 15 anbi12d x = y m x n x m F m gcd F n = 1 m x F m K m y n y m F m gcd F n = 1 m y F m K
17 11 16 anbi12d x = y x K F : m x n x m F m gcd F n = 1 m x F m K y K F : m y n y m F m gcd F n = 1 m y F m K
18 prodeq1 x = y m x F m = m y F m
19 18 breq1d x = y m x F m K m y F m K
20 17 19 imbi12d x = y x K F : m x n x m F m gcd F n = 1 m x F m K m x F m K y K F : m y n y m F m gcd F n = 1 m y F m K m y F m K
21 cleq1lem x = y z x K F : y z K F :
22 difeq1 x = y z x m = y z m
23 22 raleqdv x = y z n x m F m gcd F n = 1 n y z m F m gcd F n = 1
24 23 raleqbi1dv x = y z m x n x m F m gcd F n = 1 m y z n y z m F m gcd F n = 1
25 raleq x = y z m x F m K m y z F m K
26 24 25 anbi12d x = y z m x n x m F m gcd F n = 1 m x F m K m y z n y z m F m gcd F n = 1 m y z F m K
27 21 26 anbi12d x = y z x K F : m x n x m F m gcd F n = 1 m x F m K y z K F : m y z n y z m F m gcd F n = 1 m y z F m K
28 prodeq1 x = y z m x F m = m y z F m
29 28 breq1d x = y z m x F m K m y z F m K
30 27 29 imbi12d x = y z x K F : m x n x m F m gcd F n = 1 m x F m K m x F m K y z K F : m y z n y z m F m gcd F n = 1 m y z F m K m y z F m K
31 cleq1lem x = M x K F : M K F :
32 difeq1 x = M x m = M m
33 32 raleqdv x = M n x m F m gcd F n = 1 n M m F m gcd F n = 1
34 33 raleqbi1dv x = M m x n x m F m gcd F n = 1 m M n M m F m gcd F n = 1
35 raleq x = M m x F m K m M F m K
36 34 35 anbi12d x = M m x n x m F m gcd F n = 1 m x F m K m M n M m F m gcd F n = 1 m M F m K
37 31 36 anbi12d x = M x K F : m x n x m F m gcd F n = 1 m x F m K M K F : m M n M m F m gcd F n = 1 m M F m K
38 prodeq1 x = M m x F m = m M F m
39 38 breq1d x = M m x F m K m M F m K
40 37 39 imbi12d x = M x K F : m x n x m F m gcd F n = 1 m x F m K m x F m K M K F : m M n M m F m gcd F n = 1 m M F m K m M F m K
41 prod0 m F m = 1
42 nnz K K
43 1dvds K 1 K
44 42 43 syl K 1 K
45 41 44 eqbrtrid K m F m K
46 45 adantr K F : m F m K
47 46 ad2antlr K F : m n m F m gcd F n = 1 m F m K m F m K
48 coprmproddvdslem y Fin ¬ z y y K F : m y n y m F m gcd F n = 1 m y F m K m y F m K y z K F : m y z n y z m F m gcd F n = 1 m y z F m K m y z F m K
49 10 20 30 40 47 48 findcard2s M Fin M K F : m M n M m F m gcd F n = 1 m M F m K m M F m K
50 49 exp4c M Fin M K F : m M n M m F m gcd F n = 1 m M F m K m M F m K
51 50 impcom M M Fin K F : m M n M m F m gcd F n = 1 m M F m K m M F m K
52 51 3imp M M Fin K F : m M n M m F m gcd F n = 1 m M F m K m M F m K