Metamath Proof Explorer


Theorem copsex2dv

Description: Implicit substitution deduction for ordered pairs. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses copsex2dv.a φ A U
copsex2dv.b φ B V
copsex2dv.1 φ x = A y = B ψ χ
Assertion copsex2dv φ x y A B = x y ψ χ

Proof

Step Hyp Ref Expression
1 copsex2dv.a φ A U
2 copsex2dv.b φ B V
3 copsex2dv.1 φ x = A y = B ψ χ
4 3 ex φ x = A y = B ψ χ
5 4 alrimivv φ x y x = A y = B ψ χ
6 copsex2t x y x = A y = B ψ χ A U B V x y A B = x y ψ χ
7 5 1 2 6 syl12anc φ x y A B = x y ψ χ