Metamath Proof Explorer


Theorem copsex2ga

Description: Implicit substitution inference for ordered pairs. Compare copsex2g . (Contributed by NM, 26-Feb-2014) (Proof shortened by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis copsex2ga.1 A = x y φ ψ
Assertion copsex2ga A V × W φ x y A = x y ψ

Proof

Step Hyp Ref Expression
1 copsex2ga.1 A = x y φ ψ
2 xpss V × W V × V
3 2 sseli A V × W A V × V
4 1 copsex2gb x y A = x y ψ A V × V φ
5 4 baibr A V × V φ x y A = x y ψ
6 3 5 syl A V × W φ x y A = x y ψ